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Abstract

Direct aldol reactions of several aromatic aldehydes with ketones using L-proline-2,4,6-trinitroanilide catalyst 2d were conducted.
Under optimized conditions, high enantioselectivity (99% ee), regioselectivity (up to 95:5), and diastereoselectivity (up to 98:2) were
achieved.
� 2008 Elsevier Ltd. All rights reserved.
Asymmetric aldol reactions are one of the most valuable
fundamental C–C bond forming reactions because they
give synthetically useful chiral building blocks.1 Although
first reported in the 1970s that the L-proline (1) catalyzed
intramolecular aldol reactions,2 L-proline remained undev-
eloped for the next 30 years. After List and Barbas adopted
1 for intermolecular aldol reactions,3 it has been reevalu-
ated in asymmetric aldol reactions.4 List’s work4f,g on the
mechanism of intermolecular aldol reactions proposed that
the enamine formed rigid transition states where the chiral-
ity was regulated through hydrogen-bonding with the car-
bonyl group of the aldehyde (Scheme 1). Recently, new
additions are continuously being made to the list of organ-
ocatalysts that can yield high enantioselectivity through the
transition state related to the above: L-proline aliphatic
amides,5 L-proline aromatic amides,6 chiral pyrrolidines
with tetrazole,7 chiral pyrrolidines with sulfonamide,8 4-
substituted L-prolines,9 chiral diamine-protonic acids,10

and axially chiral amino acids.11 Gong disclosed that when
L-prolineanilide analogs were used in asymmetric aldol
reactions, ee of aldol adducts increased as the electron-
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withdrawing ability of 4-substituent of anilide increased.5b

However, L-proline-4-nitroanilide (2b), which had strong
electron-withdrawing group12 on the aromatic ring, gave
low enantioselectivity.5b In this Letter, we report asymmet-
ric direct aldol reactions catalyzed by novel L-proline-2,4,6-
trinitroanilide (2d), which possesses a strong acidic N–H
moiety caused by three electron-withdrawing nitro groups
(see Fig. 1).

Reaction of 2a13 with fuming nitric acid (6 equiv) and
sulfuric acid in chloroform gave 2d in high yield (Scheme
2).14 The optical purity of 2d was confirmed to be pure
(>99% ee) in comparison with the DL-2d by chiral HPLC.15

The aldol reactions of acetone with 4-nitrobenzaldehyde
(4a) are shown in Table 1.16 When using catalyst 2d and
HMPA as a solvent, ee was highest (85% ee) among the
solvents investigated; however, the yield of the adduct
was only 20% (entry 6). This is due to the formation of
Fig. 1. L-Proline and its nitroanilide analogs.

mailto:rshirai@dwc.doshisha.ac.jp


Scheme 1. Proposed mechanism for asymmetric direct aldol reaction
catalyzed by L-proline (1).

Scheme 2. Synthesis of L-proline-2,4,6-trinitroanilide 2d.

Fig. 2. Structures of L-prolineanilide analogs 2a–d, 3a–f.
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dehydration and double aldol reaction products. To
improve catalytic turnover, water and weak acid5o were
added (entries 7–11). The formation of byproducts was
suppressed without the loss of enantioselectivity when
30 equiv of water was added (entries 8 and 9). However,
Table 1
Direct asymmetric aldol reactions of 4-nitrobenzaldehyde 4a with acetone

Entrya Acetone Solvent H2O Weak acid Catalyst

1 10 equiv None 0 equiv None 2d

2 10 equiv CH2Cl2 0 equiv None 2d

3 10 equiv THF 0 equiv None 2d

4 10 equiv DMF 0 equiv None 2d

5 10 equiv DMSO 0 equiv None 2d

6 10 equiv HMPA 0 equiv None 2d

7 10 equiv HMPA 5 equiv None 2d

8 10 equiv HMPA 30 equiv None 2d

9 20 equiv HMPA 30 equiv None 2d

10 20 equiv HMPA 30 equiv HOAc (0.2 equiv) 2d

11 20 equiv HMPA 30 equiv PhCOOH (0.2 equiv) 2d

12e 20 equiv HMPA 30 equiv None 2d

13e 20 equiv HMPA 30 equiv None 2a

14e 20 equiv HMPA 30 equiv None 2b

15e 20 equiv HMPA 30 equiv None 2c

16e 20 equiv HMPA 30 equiv None 3a

17e 20 equiv HMPA 30 equiv None 3b

18e 20 equiv HMPA 30 equiv None 3c

19e 20 equiv HMPA 30 equiv None 3d

20e 20 equiv HMPA 30 equiv None 3e

21e 20 equiv HMPA 30 equiv None 3f

a The reaction of 4a (0.3 mmol, 1 equiv) with acetone was conducted in the
0.2 equiv) at room temperature for 1 d.

b Isolated yield.
c Optical purity was determined by chiral HPLC (CHIRALPAK AS-H). Abs

the measured optical rotation.4j

d Relative and absolute configuration were unclear.
e The reaction was conducted for 4 d.
the yield was not improved even in the presence of weak
acids (entries 10 and 11). At best, the aldol adduct was
obtained in 90% yield and 85% ee when 4a (1 equiv) was
reacted with acetone (20 equiv) in HMPA (3 mL) and
water (30 equiv) for 4 d (entry 12). In the reactions using
several L-proline-nitroanilide catalysts 2a–d,17 ee of aldol
adducts increased as the number of nitro group of catalysts
increased (entries 12–15). Similarly, ee of aldol adducts
increased as the electron-withdrawing ability of 2,6-substit-
uents of the catalysts 3a–e18 increased (entries 16–20), and
the reaction using 3f18 gave 5a with 88% yield and 87% ee.
5a 6 Yieldb (%) 7d Yieldb (%) 4a Recoveryb (%)

Yieldb (%) eec (%)

79 20 Trace Trace 18
65 �17 9 Trace 11
58 20 9 7 7
41 61 11 13 6
33 76 18 5 6
20 85 12 12 19
53 87 7 7 9
42 85 Trace Trace 54
56 84 Trace Trace 41
49 84 Trace Trace 47
55 83 Trace Trace 41
90 85 Trace Trace Trace
88 8 Trace Trace Trace
80 54 Trace 18 Trace
90 82 Trace Trace Trace
18 4 Trace Trace 70
89 9 Trace Trace Trace
80 18 Trace 7 Trace
72 50 Trace 18 Trace
96 63 Trace Trace Trace
88 87 Trace Trace Trace

indicated solvent (3 mL) and H2O in the presence of catalyst (0.06 mmol,

olute configuration of the major enantiomer was determined by comparing



Table 2
Direct asymmetric aldol reaction of aromatic aldehyde with acetone
catalyzed by 2d

Entrya Aldehyde R Yieldb (%) eec (%)

1 4a 4-NO2Ph 5a 90 85
2 4b Ph 5b 8 78
3 4c 4-OMePh 5c Trace n.d.
4d 4d 4-ClPh 5d 65 88
5 4e 2-NO2Ph 5e 87 89
6 4f 2-Pyridyl 5f 48e 82
7 4g C6H11 5g Trace n.d.

a The reaction of aldehyde (0.3 mmol, 1 equiv) with acetone (6.0 mmol,
20 equiv) was conducted in HMPA (3 mL) and H2O (9.0 mmol, 30 equiv)
in the presence of 2d (0.06 mmol, 0.2 equiv) at room temperature for 4 d.

b Isolated yield.
c Optical purity was determined by chiral HPLC (CHIRALPAK AS-H).

Absolute configuration of the major enantiomer was determined by
comparing the measured optical rotation.4j

d The reaction was conducted for 12 d in the presence of H2O (15 equiv).
e Although the reaction proceeded in good conversion, the isolation

procedure was not optimized due to high hydrophilicity of 5f.

2404 K. Sato et al. / Tetrahedron Letters 49 (2008) 2402–2406
It is demonstrated that the inductive electron-withdrawing
groups on the aromatic ring are also effective for high ee
(see Fig. 2).

The generality of the substrates of the aldol reactions
was elucidated (Table 2). In the reactions of acetone with
several aldehyde catalyzed by 2d, ee of aldol adducts was
Table 3
Direct asymmetric aldol reaction of 4-nitrobenzaldehyde 5a with ketones cata

Entrya Ketone 5

R1 R2 Yieldb (%) drc (a

1 H Me 90 (5a) —
2 Me Me 23 (anti-5h), Trace (syn-5h) 98:2
3e Me Me 56 (anti-5h), Trace (syn-5h) 98:2
4 Et Me Trace (5i) n.d.
5 Me Et None (5j) —
6 H Ph None (5k) —
7 Cyclopentanone 87 (anti-5l + syn-5l) 71:29
8 Cl Me 44 (anti-5m + syn-5m) 93:7
9f Cl Me 90 (anti-5m + syn-5m) 94:6

a The reaction of 4a (0.3 mmol, 1 equiv) with ketone (6.0 mmol, 20 equiv) in H
of 2d (0.06 mmol, 0.2 equiv) at room temperature for 4 d.

b Isolated yield.
c Diastereoisomeric and regioisomeric ratios were obtained by 1H NMR of
d Optical purity was determined by chiral HPLC (CHIRALPAK AS-H or A

comparing the measured optical rotation and the retention times with the rep
e The reaction was conducted for 12 d in the presence of H2O (15 equiv).
f In the presence of H2O (15 equiv) and 2d (0.5 equiv).
from 78% ee to 89% ee (entries 1–5). The chemical yield
of the adducts increased as the strength of the electron-
withdrawing property increased. Reactions of aromatic
aldehyde with no electron-withdrawing group were very
slow, and the reactions did not complete even after 4 days
(entries 2 and 3). When 4d was used as a substrate, the
aldol adducts 5d were obtained in 65% yield and 88% ee,
but dehydrated byproducts were obtained in 30% yield
(entry 4). Reaction of heteroaromatic aldehyde 4g gave
5g with 48% yield and 82% ee (entry 6). The reactivity of
aliphatic aldehyde 4f was very low to give trace amount
of 5g (entry 7).

Next, aldol reactions between 4a and several ketones
catalyzed by 2d were investigated (Table 3). The reactivity
of sterically hindered ketones was low (entries 4–6). Reac-
tion of cyclopentanone with 4a gave 5l with high ee (96%
ee), but diastereoselectivity (anti:syn) was moderate
(71:29) (entry 7). Reaction of 2-butanone with 4-nitrobenz-
aldehyde gave anti-5h with 56% yield and 99% ee (entry 3).
In this case, diastereoselectivity was very high (98:2), but
regioselectivity (5:8) was low (62:38). When chloroacetone
was used as a substrate, the aldol adducts 5m were obtained
in 90% yield and 98% ee (anti) with high diastereo-
selectivity (94:6) and regioselectivity (92:8) (entry 9).

In conclusion, we synthesized novel organocatalyst L-
proline-2,4,6-trinitroanilide (2d), and applied it for direct
asymmetric aldol reactions. Under optimized conditions,
high enantioselectivity (up to 99% ee), regioselectivity (up
to 95:5), and diastereoselectivity (up to 98:2) were achieved.
Further mechanical study as well as the application of 2d to
the other reactions is currently underway.
lyzed by 2d

rrc (5:8) 8

nti:syn) eed (%) anti; (syn) Yieldb (%) eed (%)

85 — — —
98; (n.d.) 63:37 13 (8h) 87
99; (n.d.) 62:38 34 (8h) 93
n.d. n.d. Trace n.d.
— — — —
— — — —
96; (54) — —
95; (21) 95:5 Trace n.d.
98; (21) 92:8 7 (8m) 80

MPA (3 mL) and H2O (9.0 mmol, 30 equiv) was conducted in the presence

the crude mixture.
D-H). Absolute configuration of the major enantiomer was determined by
orted data.4j,5d,8b,19
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